
On Shift and Resolution of Relaxation Maxima in 
Two-Phase Polymeric Systems 

YU. S. LIPATOV, V. F. ROSOVITSKY, B. V. BABICH, and N. A. KVITKA, 
Insti tute of Macromolecular Chemistry, Ukrainian Academy of Sciences, 

252160, Kiev,  USSR 

Synopsis 

The results of calculations of viscoelastic properties of filled polymers assuming “boundary layer” 
and the polymer matrix having their own and different glass transition temperatures are presented. 
The calculations have been made on the basis of the models in series and parallel coupling of visco- 
elastic bodies as well as Takayanagi’s model. Using specified temperature, dependences of visco- 
elastic properties of the polymer and the “boundary layer” temperature dependences of the real 
part G’ of the complex shear modulus and tan 6 for such a two-phase system with varied differences 
in glass transition temperatures and concentration of the components were derived. The degree 
of maxima shift observed experimentally for the filled polymer owing to variation of properties of 
the “boundary layer” (its concentration and glass transition temperature) were evaluated. Condi- 
tions for the appearance of two maxima tan 6 for the respective glass transition temperatures of the 
polymer and “boundary layer” on the curves tan 6 = f ( T )  were determined. 

INTRODUCTION 

Study of viscoelastic and dielectric properties of filled polymers has shown 
that an increase in filler content usually results in a maximum shift toward higher 
temperatures, i.e., the glass transition temperature increases.lY2 One of the 
reasons for this is a change in properties of the boundary layer between the 
polymer and the filler surfaces and a decrease in molecular mobility. In such 
a case the polymer between two filler particles consists of two parts: boundary 
layer with its own glass transition temperature, and unchanged polymer matrix. 
However, only one glass transition temperature for such systems was ~bserved ,~  
and the reason for the absence of maximum splitting was ambiguous. 

The glass transition temperature of filled polymers linearly depends on the 
fraction of the polymer v in the boundary layer: 

Tgf = Tgo + ATv 

where Tgo is the glass transition temperature of the unfilled polymer, Tgf is the 
glass transition temperature for filled polymer, and AT is a constant corre- 
sponding to the increase in glass transition temperature for the system where 
all of the polymer is in the boundary layer (v = l).14 We can expect the ap- 
pearance of two glass transition temperatures for such systems. If the reason 
for an increase in glass transition temperature of the filled polymer is the decrease 
of molecular mobility in the boundary layer, it  is not clear why the splitting of 
maxima on experimental curves of temperature dependence of mechanical or 
dielectrical losses is not observed. The present study is intended to elucidate 
this question. 
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Theoretical Calculation for Different Models of Filled Polymers 

For a polymer filled with a mineral filler, the glass transition temperature (T,) 
corresponding to maximum values for tan 6 is unequivocally determined by Tg 
of the polymer between two filler particles. In this case, the position of Tg refers 
to the polymer as a mixture of two constituents-unchanged polymeric matrix 
with initial glass transition temperature and polymer in the boundary layer with 
properties changed by the action of the filler surface. The volume fraction of 
the boundary layer is usually a function of filler concentration and its na- 
ture.1 

In real filled polymers the boundary layers and the unchanged polymer matrix 
are arranged randomly with regard to direction of deformation. This makes it 
difficult to describe the behavior of the system theoretically. However, the study 
of some simple models may be sufficient to determine the viscoelastic behavior 
of the system if we exclude the deformation of the filler. To elucidate the con- 
ditions of maxima resolution we have applied simple models with a polymer 
consisting of two regions or domains, each with different properties. These 
domains are thought to be coupled in parallel or in series with respect to the di- 
rection of deformation. We have also investigated the Takayanagi modeL5 

A simple equation enables us to estimate the main peculiarities in viscoelastic 
properties of the specimen made of two constituent parts. All the calculations 
were done using a computer. Typical curves of the temperature dependence 
of the real part of the shear modulus G' and tan 6 were taken as initial data for 
calculations. For such curves the experimental data on the temperature de- 
pendence of G' and tan 6 for an epoxy polymer in the region of transition from 
glassy to rubberlike states were chosen.6 

These experimental dependences may be approximated as follows: 

log G' = A arccotB(T - T,) (1) 

tan 6 = Ce-D(T-Tg)' (2) 

The properties of the second component (boundary layer) were specified by 
shifting the experimental curves along the temperature axis in either direction, 
which simulated the decrease or increase of the glass transition temperature of 
the polymer in the boundary layer. The temperature dependence G' and 
tan 6 for two-component systems were distinguished from those for the first 
component by value of Tg in eqs. (1) and (2). 

The calculations of G' and tan 6 for the two-component system with parallel 
deformation was performed according to eqs. (3) and (4): 

G' = PIG; + p2GL (3) 

where p1 and p~ are volume fractions of the components; and G;, Gi, tan 61, and 
tan 62 are values of viscoelastic characteristics at any arbitrary temperature. 

For the case of series model, eqs. (5) and (6) were used: 
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Substituting the functions of temperature dependence of each component we 
obtain values for the temperature dependence of G' and tan 6 of the two-com- 
ponent specimen. 

To determine T, of the two-component system an analytical expression is 
needed for the first derivative of tan 6, and then it is equated with zero at  various 
ratios of the components. However, we have used numerical integration to 
calculate the values G' and tan 6 of the system for different temperatures using 
eqs. (5) and (6) and varying volume fractions and glass transition temperatures 
of the components. 

Figure 1 shows theoretical temperature dependence of tan 6 for the two- 
component system at  various ratios of polymer-boundary layer and for arbitrarily 
chosen differences in their T,. One of the components has a constant T, = 
125"C, whereas in the second one with p 2  = pl the T, value varied in the tem- 
perature range of 90-160°C. Hence, the model includes both an increase and 
a decrease of T, in the boundary layers under the influence of the filler sur- 
face. 

With increasing fraction of the boundary layer, regular shift occurs, broadening 
and then splitting the mechanical losses into two maxima (Fig. 1). Analogous 
calculations were performed for other values of AT,. As generalized charac- 
teristics of the curves of the type presented in Figure 1, temperatures of maximum 
of T, and its value and tan 6 were taken. 

Let us now consider the concentration dependences of T, and tan 6 for two 
cases. 
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Fig. 1. Transformation of curve tan 6 = f ( T )  with variation of concentration of components: 
pi = 0.6; 2,0.7; 3,0.8; 4,O.g; 5,0.95; 6,0.99; Tgo = 125OC, Tgi = 100°C. 
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Fig. 2 Dependence of T, of the two-component model on volume fraction (T,l> T,o). Curves 
1-5 for deformation in parallel and 1’-5’ for deformation series. Tgl: (1,l’) 14OoC, (2.2’, 4) 15OoC, 
(3,3’,5,5’) 160°C, Tg0 = 125°C. Regions p i  with two maxima tan 6 are shaded. 

Case 1 
The boundary layer has a higher glass transition temperature as compared 

to that for the polymer in bulk, i.e., the layer is more “rigid.” Figures 2 and 3 
give dependences Tg and tan 6 calculated for the model with parallel deformation 
of the components. If Tgo exceeds T,l by less than AT, = 15”C, some shift of 
the maximum occurs toward higher temperatures without appearance of the 
second maximum at any concentration of the polymer in the boundary layers 
(curves 1 and l’, Fig. 2). Here, the value of the maximum passes over the mini- 
mum in the range of small concentrations of the polymer in the boundary layer 
(see curve 1, Fig. 3). 

For the series model, the minimum tan 6 lies in the range of rather high con- 
centrations, pl = 0.8-0.9. The method of coupling the components strongly 
influences the concentration dependence of Tg. 

For parallel coupling of the components, a comparatively small increase in 
pl leads to the essential growth of Tg (see curve 1, Fig. 2), whereas for series 
coupling the marked growth of Tg may appear only at  high pl (see curve 1; Fig. 
2). 

In parallel coupling, the second maximum of losses which characterizes the 
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Fig. 3. Dependence of tan 6 of the two-component model on the “rigid” component. For desig- 
nations, see Fig. 2. 
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properties of the boundary layer becomes more marked at  a small concentration 
of the layer (curves 2 and 3, Fig. 3). At the same time, for the second model this 
second maximum shows itself only at  very high concentrations of the boundary 
layer (curve 5, Fig. 3). It is also peculiar that for resolution of maxima for the 
model with series coupling a much higher difference in glass temperature between 
polymer matrix and boundary layer is required. For parallel coupling, the res- 
olution of maxima is possible at AT, = 25°C (curve 2, Fig. a), while for the series 
coupling the resolution manifests itself only at  AT, = 35°C (curve 5, Figs. 2 
and 3). 

The models under discussion have an interesting peculiarity in the case of 
rather high values of AT, N 25”C, namely, at low content of the rigid boundary 
layer, the increase of its concentration leads to the shift of the maximum toward 
lower temperatures (see curves 4 and 5, Fig. 3); the height of the maximum di- 
minishes rapidly. At comparatively small concentrations of the rigid layers, there 
appears the second maximum, its value increasing linearly with increase of p~ 
(curves 2 and 3, Fig. 3). 

For coupling in series this effect is less pronounced and appears only in the 
range of very high concentrations of the rigid component, i.e., of the boundary 
layer (curve 5, Figs. 2 and 3). 

Case 2 

The boundary layer has a T, lower than T, of the initial polymer (“soft” layer). 
Data calculated for this case are presented in Figures 4 and 5. With difference 
in glass transition temperature AT, not higher than 15-2OoC, only one maximum 
is present on the curves, tan 6 = f ( T ) ,  since its location is shifted to lower tem- 
peratures (curves 1 and l’, Figs. 4 and 5). The height of the maximum depends 
on pl passing over the minimum. The position of the minimum on the concen- 
tration axis and its value depend on the method of coupling of the deformed 
domains: for series deformation even low content of the soft component de- 

a I 05 {a  9 

Fig. 4. Influence of the “soft” component content on Tg of the two-component model with parallel 
(1-5) and in series (1’-5’) loading of the layers. Tgl: (1,l’) llO°C, (2,2’, and 4) loO°C, (3,3’,5,5’) W”C, 
Tgl < Tgo. 
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Fig. 5. Influence of “soft” component content on tan 6 of the two-component model. For desig- 
nations, see Fig. 4. 

presses markedly Tg and tan 6 (curve 1, Figs. 4 and 5). For parallel coupling, 
a decrease in Tg with increasing p1 is nearly linear and only slightly depends on 
AT,, reaching noticeable values a t  p1 > 0.8-0.9, where nonlinear dependence, 
Tg = f ( p l ) ,  appears (curves 1-3, Fig. 4). 

The appearance of the second (low-temperature maximum) may be observed 
for the model with parallel coupling at comparatively high values of pl  and is 
followed by the shift toward high temperatures with increase in p1 (curves 4 and 
5, Fig. 5). 

Another paradoxical phenomenon of this case ( Tgl < T,o) is the increase in 
Tg of the specimen in coupled layers in the range of small p1 (see curve 5, Fig. 4). 
As in the case of Tgl > Tgo, this is observed at high enough AT, and is evidently 
due to superposition of “tails” of the curves tan 6 = f (  T )  of the initial component. 
The two models discussed above may occur in composite materials like laminated 
plastics and in anisotropic glass-fiber-reinforced plastics with transverse (uni- 
directional) arrangement of the fibers. In such systems the shift of the maxima 
of mechanical losses to higher or lower temperatures and conditions for their 
resolution depend on the properties of the boundary layer, its volume fraction, 
and arrangement of two constituent components with respect to the deformation 
direction. 

Case 3 

This is represented by the Takayanagi model. In real filled polymers the 
arrangement of the boundary layers around the filler particles is random. Hence, 
some of them may be deformed in parallel with the polymer matrix and some 
may be deformed in series. Therefore, i t  is of interest to calculate the shift of 
T, and conditions of maximum resolution for the Takayanagi model5 applied 
to the structure of the polymer between filler particles wherein the combination 
of both cases occurs. 

Choosing values of parameters of Takayanagi model X and 6 for describing 
two-component polymer binder in the filled polymers, we have made the fol- 
lowing simplifications. Particles of the filler are considered to be cubic, edge 
length equal to c ,  and form simple cubical lattices. The boundary layer of the 
polymer has thickness d ,  which is constant for all filler concentrations. Owing 
to very high modulus of the filler, the latter is barely deformed. Therefore, the 
domains of the polymer loaded in parallel with the filler (shaded in Fig. 6) are 
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Fig. 6. Schematic drawing of arrangement of filler particles in the polymer matrix. 

not deformed. Consequently, viscoelastic properties of a filled specimen depend 
only on the properties of the boundary layers that are deformed in series. With 
such simplifications the increase in volume fraction of the filler causes some 
diminishing of the edge length of the elementary unit consisting of filler particles 
and a boundary layer (c + d )  with changes in parameters A and 4 of the Takay- 
anagi model in the following way. It  may be shown that with regard to pf = 
c 3 / a  3, 

d 

1/2(a - c )  

2d pf ' / 3  - _  - 
c 1 - p f 1 / 3  

4 =  

c + 2 d  c + 2 d  A=--- - 
Pf  l j 3  

a C 

Having calculated the values of these parameters for various volume fractions 
of the filler and assuming6 c = 10 X m, we can obtain 
the following expressions: 

(7) 

(8)  

m and d = 0.5 X 

G' = (1 - A)G; + [AX/(X' + Y')] 

G" = (1 - A)Gi + [AY/(X2 + Y')] 

where 

(1 -4W; + 4 G  

(1 - 4 G  + 

X =  
(G;)' + (G';l2 

(G;)' + (G;)' 

(G;)' + (Gi)2 

(G;)' + (Gk)' 
4G k Y =  

The temperature dependence of G' and tan 6 for "mixtures" of the boundary 
layer and the unchanged polymer matrix were calculated and Tg of mixtures a t  
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various p f  were found. Figure 7 shows the dependences Tg of the polymer and 
boundary layer on filler concentration at  different glass transition temperatures 
of the constituent components. 

If Tg of the boundary layer is 15°C higher than Tg of the polymer matrix, then 
with specified assumptions the change in Tg of the filled polymer will not be 
observed even at  high p f  (curve 3, Fig. 7), and the second loss maximum, if any, 
will manifest itself only in some broadening of the maximum and asymmetry 
of the descending part of the curve tan 6 = f ( T ) .  If the glass transition tem- 
perature of the boundary layer was 40°C higher than that for the polymer matrix, 
then the respective high-temperature maximum may appear a t  comparatively 
low content of the filler, but a t  a temperature 5°C higher than the accepted Tg 
of the boundary layer (curve 1, Fig. 7). With the Tg of the boundary layer being 
lower than Tg of the polymer matrix, the boundary layer essentially influences 
the position and the value of the loss maximum. Figure 7 shows that for a soft 
boundary layer the Takayanagi model predicts linear dependence of Tg on p f ,  
i.e., increase in p f  causes a shift of the maximum toward lower temperatures 
(curves 2,4, and 6, Fig. 7). A maximum corresponding to Tg of the soft boundary 
layer may be observed only at very high volume fraction of the filler and over 
4OoC (curve 6, Fig. 7). 

It is obvious that in real systems parameters of the model depend on p f  in a 
different way, as the considered case excludes a great part of the boundary layer 
out of the deformation process. Therefore, the results obtained for the 
Takayanagi model may be regarded only as qualitative regularities that show 

’ 4  
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Fig. 7. Dependence of T, of filled polymer on filler concentration in the case of “rigid” (curves 

1,3, and 5) and “soft” (curves 2,4, and 6) boundary layer. T,I: (1,5) 165”C, (3) 14OoC, (2) llO°C, 
(4) 85”C, and (6) 85OC. 
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that the rigid boundary layer (with higher Tg as compared with polymer matrix) 
increases the Tg of the filled polymer insignificantly, whereas the soft layer es- 
sentially decreases Tg. 

CONCLUSIONS 

The application of a two-phase model of the polymer between filrer particles 
in the filled polymer to calculate its glass transition temperature shows that the 
shift in Tg of the whole polymer and the resolution of maxima on the curves 
tan 6 = f ( T )  depend on the ratio of the constituents and their glass transition 
peratures. On the basis of calculations which were done for different models, 
it was established that the appearance of the two maxima corresponding to the 
unchanged polymer matrix and boundary layer is possible if there exists an es- 
sential difference in their glass transition temperatures, namely, Tg > 20-40°C. 
This also depends on the boundary layer concentration (which is dependent on 
filler concentration) and on the conditions of the deformation. 

The data obtained using some simple models correspond to the experimental 
results on the shift in Tg of various filled polymers. The calculations also show 
why only one changed glass transition temperature is observed in filled polymers 
and the conditions for the appearance of two glass transition temperatures, one 
of them corresponding to the boundary layer of polymer on filler surface. 
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